3.191 \(\int \frac {2+3 x^2}{\sqrt {3+5 x^2+x^4}} \, dx\)

Optimal. Leaf size=257 \[ \frac {3 x \left (2 x^2+\sqrt {13}+5\right )}{2 \sqrt {x^4+5 x^2+3}}+\frac {\sqrt {\frac {2}{3 \left (5+\sqrt {13}\right )}} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) F\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {x^4+5 x^2+3}}-\frac {\sqrt {\frac {3}{2} \left (5+\sqrt {13}\right )} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) E\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{2 \sqrt {x^4+5 x^2+3}} \]

[Out]

3/2*x*(5+2*x^2+13^(1/2))/(x^4+5*x^2+3)^(1/2)+1/3*(1/(36+x^2*(30+6*13^(1/2))))^(1/2)*(36+x^2*(30+6*13^(1/2)))^(
1/2)*EllipticF(x*(30+6*13^(1/2))^(1/2)/(36+x^2*(30+6*13^(1/2)))^(1/2),1/6*(-78+30*13^(1/2))^(1/2))*(6+x^2*(5+1
3^(1/2)))*6^(1/2)/(5+13^(1/2))^(1/2)*((6+x^2*(5-13^(1/2)))/(6+x^2*(5+13^(1/2))))^(1/2)/(x^4+5*x^2+3)^(1/2)-1/4
*(1/(36+x^2*(30+6*13^(1/2))))^(1/2)*(36+x^2*(30+6*13^(1/2)))^(1/2)*EllipticE(x*(30+6*13^(1/2))^(1/2)/(36+x^2*(
30+6*13^(1/2)))^(1/2),1/6*(-78+30*13^(1/2))^(1/2))*(6+x^2*(5+13^(1/2)))*(30+6*13^(1/2))^(1/2)*((6+x^2*(5-13^(1
/2)))/(6+x^2*(5+13^(1/2))))^(1/2)/(x^4+5*x^2+3)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 257, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {1189, 1099, 1135} \[ \frac {3 x \left (2 x^2+\sqrt {13}+5\right )}{2 \sqrt {x^4+5 x^2+3}}+\frac {\sqrt {\frac {2}{3 \left (5+\sqrt {13}\right )}} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) F\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {x^4+5 x^2+3}}-\frac {\sqrt {\frac {3}{2} \left (5+\sqrt {13}\right )} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) E\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{2 \sqrt {x^4+5 x^2+3}} \]

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x^2)/Sqrt[3 + 5*x^2 + x^4],x]

[Out]

(3*x*(5 + Sqrt[13] + 2*x^2))/(2*Sqrt[3 + 5*x^2 + x^4]) - (Sqrt[(3*(5 + Sqrt[13]))/2]*Sqrt[(6 + (5 - Sqrt[13])*
x^2)/(6 + (5 + Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticE[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*S
qrt[13])/6])/(2*Sqrt[3 + 5*x^2 + x^4]) + (Sqrt[2/(3*(5 + Sqrt[13]))]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + S
qrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], (-13 + 5*Sqrt[13])/6])/Sqr
t[3 + 5*x^2 + x^4]

Rule 1099

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b +
q)*x^2)*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)]
)/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1135

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b +
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticE[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)])/(2*c*Sqrt[a + b*x^2
 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; Fre
eQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {2+3 x^2}{\sqrt {3+5 x^2+x^4}} \, dx &=2 \int \frac {1}{\sqrt {3+5 x^2+x^4}} \, dx+3 \int \frac {x^2}{\sqrt {3+5 x^2+x^4}} \, dx\\ &=\frac {3 x \left (5+\sqrt {13}+2 x^2\right )}{2 \sqrt {3+5 x^2+x^4}}-\frac {\sqrt {\frac {3}{2} \left (5+\sqrt {13}\right )} \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) E\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{2 \sqrt {3+5 x^2+x^4}}+\frac {\sqrt {\frac {2}{3 \left (5+\sqrt {13}\right )}} \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) F\left (\tan ^{-1}\left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {3+5 x^2+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.12, size = 159, normalized size = 0.62 \[ \frac {i \sqrt {\frac {-2 x^2+\sqrt {13}-5}{\sqrt {13}-5}} \sqrt {2 x^2+\sqrt {13}+5} \left (\left (11-3 \sqrt {13}\right ) F\left (i \sinh ^{-1}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right )|\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )+3 \left (\sqrt {13}-5\right ) E\left (i \sinh ^{-1}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right )|\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )\right )}{2 \sqrt {2} \sqrt {x^4+5 x^2+3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(2 + 3*x^2)/Sqrt[3 + 5*x^2 + x^4],x]

[Out]

((I/2)*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] + 2*x^2]*(3*(-5 + Sqrt[13])*EllipticE[I
*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6] + (11 - 3*Sqrt[13])*EllipticF[I*ArcSinh[Sqrt[2/(5 +
 Sqrt[13])]*x], 19/6 + (5*Sqrt[13])/6]))/(Sqrt[2]*Sqrt[3 + 5*x^2 + x^4])

________________________________________________________________________________________

fricas [F]  time = 1.24, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {3 \, x^{2} + 2}{\sqrt {x^{4} + 5 \, x^{2} + 3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)/(x^4+5*x^2+3)^(1/2),x, algorithm="fricas")

[Out]

integral((3*x^2 + 2)/sqrt(x^4 + 5*x^2 + 3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {3 \, x^{2} + 2}{\sqrt {x^{4} + 5 \, x^{2} + 3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)/(x^4+5*x^2+3)^(1/2),x, algorithm="giac")

[Out]

integrate((3*x^2 + 2)/sqrt(x^4 + 5*x^2 + 3), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 194, normalized size = 0.75 \[ \frac {12 \sqrt {-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}+1}\, \sqrt {-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}+1}\, \EllipticF \left (\frac {\sqrt {-30+6 \sqrt {13}}\, x}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}-\frac {108 \sqrt {-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}+1}\, \sqrt {-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}+1}\, \left (-\EllipticE \left (\frac {\sqrt {-30+6 \sqrt {13}}\, x}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )+\EllipticF \left (\frac {\sqrt {-30+6 \sqrt {13}}\, x}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (\sqrt {13}+5\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)/(x^4+5*x^2+3)^(1/2),x)

[Out]

-108/(-30+6*13^(1/2))^(1/2)*(-(-5/6+1/6*13^(1/2))*x^2+1)^(1/2)*(-(-5/6-1/6*13^(1/2))*x^2+1)^(1/2)/(x^4+5*x^2+3
)^(1/2)/(13^(1/2)+5)*(EllipticF(1/6*(-30+6*13^(1/2))^(1/2)*x,5/6*3^(1/2)+1/6*39^(1/2))-EllipticE(1/6*(-30+6*13
^(1/2))^(1/2)*x,5/6*3^(1/2)+1/6*39^(1/2)))+12/(-30+6*13^(1/2))^(1/2)*(-(-5/6+1/6*13^(1/2))*x^2+1)^(1/2)*(-(-5/
6-1/6*13^(1/2))*x^2+1)^(1/2)/(x^4+5*x^2+3)^(1/2)*EllipticF(1/6*(-30+6*13^(1/2))^(1/2)*x,5/6*3^(1/2)+1/6*39^(1/
2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {3 \, x^{2} + 2}{\sqrt {x^{4} + 5 \, x^{2} + 3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)/(x^4+5*x^2+3)^(1/2),x, algorithm="maxima")

[Out]

integrate((3*x^2 + 2)/sqrt(x^4 + 5*x^2 + 3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {3\,x^2+2}{\sqrt {x^4+5\,x^2+3}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2 + 2)/(5*x^2 + x^4 + 3)^(1/2),x)

[Out]

int((3*x^2 + 2)/(5*x^2 + x^4 + 3)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {3 x^{2} + 2}{\sqrt {x^{4} + 5 x^{2} + 3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)/(x**4+5*x**2+3)**(1/2),x)

[Out]

Integral((3*x**2 + 2)/sqrt(x**4 + 5*x**2 + 3), x)

________________________________________________________________________________________